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This paper presents a nonlocal, derivative free model for transient flow in unsaturated, heterogeneous,
and anisotropic soils. The formulation is based on the peridynamic model for solid mechanics. In the pro-
posed model, flow and changes in moisture content are driven by pairwise interactions with other points
across finite distances, and are expressed as functional integrals of the hydraulic potential field. Peridy-
namic expressions of the rate of change in moisture content, moisture flux, and flow power are derived,
as are relationships between the peridynamic and the classic hydraulic conductivities; in addition, the
model is validated. The absence of spacial derivatives makes the model a good candidate for flow simula-
tions in fractured soils and lends itself to coupling with peridynamic mechanical models for simulating
crack formation triggered by shrinkage and swelling, and assessing their potential impact on a wide range
of processes, such as infiltration, contaminant transport, and slope stability.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Naturally occurring soils, especially fine-textured ones, exhibit
shrinking and swelling behavior [1-3]. These soils tend to swell
when their moisture content increases, and shrink when it
decreases. At the field scale, this behavior leads to tensile stresses
that may exceed the soil’s failure limit and trigger the formation
and evolution of cracks during drying phases. Cracks may in turn
close during infiltration phases when the soil becomes wetter
and swells [4-6] giving them a dynamic nature leading to highly
nonlinear responses. These desiccation cracks have a length scale
of ten to a hundred centimeters and their effect on the hydraulic
properties of the soil is not captured by standard laboratory tests
using a Representative Elementary Volume (REV) with a length
scale of a few centimeters.

Desiccation cracking has a wide spectrum of environmental,
agricultural, and hydrological impacts. The movement of moisture
and solutes into and within the soil increases due to the presence
of these cracks that act as preferential pathways for rapid water
movement to deeper layers [7-11]. This rapid movement may low-
er the effectiveness of irrigation [12] and causes fast seepage of
nutrients and pesticides away from the plants into deeper layers
reducing the contaminants’ residence time in the unsaturated zone
where they are usually absorbed by the plants and degraded by
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bacteria, and increasing the probability of ground water and/or
surface water contamination, depending on the relief. In addition,
desiccation cracks can have a dramatic effect on processes of sur-
face water movement and flood dynamics by altering the partition-
ing of rainfall between infiltration and runoff, which is an
important issue to consider when modeling and forecasting flood
events.

Desiccation cracks also have engineering and geotechnical
impacts with potentially very serious environmental and public
safety repercussions. For example, desiccation cracks developing
at the surface of a slope may trigger the onset of a landslide. If they
develop in the core of an earth dam, cracks act as preferential
moisture flow paths, increasing the moisture content of the dam
and, with it, the pore water pressure which eventually leads to
its failure [13]. Clay barriers used in landfills and nuclear waste dis-
posal sites are also subject to desiccation cracking which reduces
the barrier’s containment effectiveness [14,15].

In this paper, we present a peridynamic model for transient
moisture flow in unsaturated, heterogeneous, and anisotropic soils.
The model is an alternative to the classic Richard’s equation and is
based on Silling’s reformulation of the theory of elasticity for solid
mechanics [16,17]. In the proposed model, we replace the classic,
local, continuum mechanics formulation by a nonlocal integral
functional. The model is free of spacial derivatives, and the flow
is driven by the hydraulic potential field instead of the gradient
of the hydraulic potential field. Katiyar et al. [18] have derived
similar peridynamic formulations for saturated steady state
flow.
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Due to the lack of spacial derivatives, this model is capable of
handling the spurious formation of cracks, which translate into
points of singularities in the parameter and hydraulic potential
fields, within the simulation domain without failing. This would
allow us to couple the derived model with a peridynamic mechan-
ical model and simulate the formation of desiccation cracks and
their dynamics and assess the potential of such an approach on
evaluating their impact on flow and solute transport. This coupling
is however the subject of a subsequent paper.

We would like to point out that the nonlocal aspect of the pro-
posed model is related to the mechanism of state change in the
domain. In classic nonlocal formulations [19-25], the new value
of a state is the one with the maximum likelihood and the change
is driven by some statistical measure of the gradient of the driving
field within the surrounding region. On the other hand, in peridy-
namic models such as this one, the change of state at a point is dri-
ven by the influence of the value of some field at points that are at
some finite distance away.

We will start by presenting the peridynamic model concept and
derive the peridynamic expression for the rate of change of mois-
ture content. We will then derive the peridynamic equations of
flow power dissipation and moisture flux, which we will use in
deriving the relationship between the peridynamic hydraulic con-
ductivity density and the classic hydraulic conductivity for
unsaturated, homogeneous, heterogeneous, isotropic, and
anisotropic soils. We will also show that the peridynamic model
equations of moisture flow and flux converge to the classic
Richard’s and Darcy’s equations at the limit of vanishing horizon.
This will be followed by a presentation of the numerical imple-
mentation and validation of the model in one and two dimensions.

2. Peridynamic flow model

Consider the homogeneous and isotropic body of soil Q in Fig. 1,

where each point x in Q represents a differential volume dV, [L*],
and is at some total hydraulic potential H(x) [L]. Suppose the
change in moisture content at every point x in Q is driven by pair-
wise interactions with all other points X’ in Q despite the finite dis-
tance separating each pair points.

Suppose also that these pairwise interactions are equivalent to a
one dimensional resistive pipe that acts as a conduit and does not
store any moisture, that we will call peripipe, and that each perip-
ipe has a property called the peridynamic hydraulic conductance
density, C(x,x’) [T'L™*], which is equal to the volume of moisture
that will flow per second in peripipe xx’' per unit hydraulic poten-
tial difference, per unit volume of x, and per unit volume of x'.

Fig. 1. Peridynamic medium representation. Point X is influenced by all points
within its horizon. H, is the horizon of x, ¢ is the radius of the horizon.

We can now define the pairwise interaction which we will call
the peridynamic flow density function J(x,x’) [T"'L], as the rate
of moisture flow from point X' to point X per unit volume of x
per unit volume of X:

JxX) = Cx,X)[H(X) — H(X)], (M

where the peripipe conductance C(-) is calculated from the peridy-
namic hydraulic conductivity density, x(x’,x) [T"'L~%], an intrinsic
material property which is not equal to, but can be related to the
classic hydraulic conductivity K [LT™'].
K(X,X)

x| -

Cx,x) = )

The change of moisture stored at X, and that of point X’ mediated by
peripipe Xx',AV,,(x,x) [L?], and AV, (x,x) [L*] respectively are

given by:

N — ety HE) —HX)] o
AV (X,X') = K(xX) ] dv,dvy, (3)
AV (X', X) = K(x’x)wdv dvy (4)

x|

Because peripipes do not store any moisture, and due to conserva-
tion of mass we have AV, (x,X)=—-AV,(x,x), and because
|xx'|| = ||x'x]||, we get the following restriction on #(-):

K(X,X) = K(X,X). )

Using Eq. (1), the total change in volumetric moisture content at
any point X in Q due to its interaction with all other points X’ in
Q, in addition to external sources, or sinks, of moisture at point
X,S(x) [T™'] is given by the following functional integral:

5000 = [0 T v, 5o, oy (6)

(x|
Eq. (6) is the peridynamic equation of flow for unsaturated porous
media. Note that there are no restrictions on C(,-) beyond the
one stated in Eq. (5) and being integrable. Integrating this equation
over the entire domain Q, we get the total change of moisture in the
domain:

dvf// (XX)

3
+ /Q Sx)dv,, [L). (7)

HO) = H®L 4 gy,
HXX’H §

Rewriting the first integral in the right hand side as follows:

// Hxx’|| dVX’dV // IIXX'H dede (8)

and switching the variables x and X' in the second integral and
reversing the integration order while keeping in mind the restric-
tion on C(-,-) (Eq. (5)), we realize that Eq. (8) evaluates to zero,
and Eq. (7) becomes:

90 xydv, — / S(x)dvV,. (9)
Q

Eq. (9) is a statement of conservation of mass in the domain and it
states that the total change in moisture content in the domain Q is
equal to the total amount of moisture added, or removed from
external sources.

We will now introduce an additional property of a peridynamic
medium, which is that any two points x and X’ separated by a dis-
tance greater than a maximum distance ¢ are too far apart to inter-
act. For every point x in Q we will define the horizon of X as the set
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‘H, of all points X’ in Q that lie within a distance ¢ of x. We will call §
the radius of the horizon, and x the center of the horizon:

Hy=4{X' e Q|0 <X —X| <} (10)
Rewriting Eq. (6) to reflect this new proposition, we get:

90 / [H(x') — H(X)] -1

—(X) = KX, X)————2>=dV, +S(x), [T]. 11
ot = [ K00 S E AV S0, T (1)

In one dimension, where dx’ is the one-dimensional equivalent of
dV,, Eq. (6) becomes:

90 [ K& X) (HX) - HX)) 4,
5t %) f/H_ x| dx'. (12)

And in two dimensions, where it is simpler to write Eq. (6) in a polar
coordinate system centered at point X, and where rdrdd is the two-
dimensional equivalent of dV,, and r = ||xxX/|| Eq. (6) becomes:

2n d
%(x) = /0 /0 K(x,X') (H(x') — H(x))drd®, (13)
with:
x=(0,0), x =(r,0).

It can be observed that Egs. (6)-(13) do not depend on any spacial
derivatives and are therefore valid everywhere in the domain
including discontinuities of parameters (x(-,-)) and hydraulic
potential field (H(-)). Whereas the classic Richard’s equation (Eq.
(14)) depends on spacial derivatives of the hydraulic conductivity

and the hydraulic potential (%,"Z’y , &%) and to be valid every-

where in the domain requires that the hydraulic conductivity field
be differentiable and the hydraulic potential be twice differentiable.
If the model were coupled with a peridynamic mechanical model,
soil volumetric changes due to moisture change would be evaluated
using a soil shrinkage curve and fed into the mechanical submodel
for evaluation. If these changes result in some links (peripipes)
exceeding the soil failure limit, those links would be severed affect-
ing the subsequent deformation of the soil and moisture flow. This is
captured by multiplying the flow density function by a test function
that reduces to zero if the interaction is severed, otherwise it is one.

00 _ H oK oH
o N Tox o

(14)

3. Flow power and moisture flux

We will now define the peridynamic expressions for moisture
flux, and for the power dissipated by moisture flow. These are
important quantities in analyzing flow problems in general, and
are particularly useful in deriving the relationship between the
peridynamic hydraulic conductivity x and the classic conductivity
K. We will use the peridynamic equation for moisture flux during
our derivation of the relationship between x and the classic con-
ductivity K for the case of one-dimensional flow, and the peridy-
namic flow power to derive the x-K relationship for the two-
dimensional, isotropic and anisotropic flow case.

3.1. Moisture flux

In peridynamic terms, moisture flux at any point X across a sur-
face S along its normal direction S, is the net volume of moisture
exchanged between points located on one side of S with points
located on the other side of S per unit time per unit area. The com-
ponent normal to S of the flow through a peripipe xx’ is given by:

!

JLxX) = Jx,X)

— .S, 15
e > (13)

Now assume that the horizon of a point x located on S is divided by
this surface into a set of points located below S, and another set of
points above it (Fig. 2). We will refer to these sets by #., and #*
respectively.

H! = {X, € Hy | (XX,)-S, >0}, (16)

Hy = {X € Hy | X ¢ HL}. (17)

For each point x; € ! we want the set of points that interact with it,
which are the points at a maximum distance §; we also want them
to be on the other side of S, which means they belong to 7}, and we
require that the peripipe passes through point x. This set is defined

as follows:
Hy = {x; € Hy | [Ixixj[| < 0, Xuxj x xix = 0}. (18)

Summing up all of these interaction leads to the value of the mois-
ture flux across point x:

aso == [ [ Lowxaviavy, o1, (19)
b x| X
In one-dimension, Eq. (19) becomes:
X pxX+6 K(X, X/ H(x") — H(x'
aw=-[ [ " )(le(’x”)l\ D dd 20)
Jx=0 JX

In two dimensions, the equation for the flux in polar coordinates
across x = (0,0), and normal to the surface S with angle ¢ is:

21 o—r' 0
q(p) = / / / k(% X) (H(X") — H(X) sin(0 + ¢) drd,do,
(21)
with:

X =(ro), xX'=0"0-m).

Here we can also note that Eqs. (20) and (21) do not depend on any
spacial derivatives and are valid everywhere in the domain includ-
ing discontinuities the hydraulic potential field (H(-)). Whereas, The
classic Darcy’s equation (Eq. (22)) depends on spacial derivatives of
the hydraulic potential (¥1%) and to be valid everywhere in the
domain requires that the hydraulic potential field be differentiable.
OH(X)
ox

qx) =K . (22)

3.2. Flow power

In the peridynamic flow model, we will define the power dissi-
pated by moisture flow at point x as the power dissipated by the
flow mobilized due to X, which is equal to half of the power

qu C
S S
Hxlu 3
Secd X NN AT S
|
3 )i *l o
Hy

Fig. 2. One-dimensional moisture flux.
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dissipated in all peripipes connected to X, the other half being the
sum of the shares of the second point in each interaction.

For each peripipe let us define the peridynamic power density
function as the power dissipated per unit volume squared, which
is equal to the flow density function times the hydraulic potential
difference:

K(X,X) (HX) — H(x))*

N

. LT (23)

Dividing Eq. (23) by two to get the share of x, then multiplying by
the volume of X’ and integration over the entire horizon #, gives
us the volumetric power dissipation at point x:

1 [ KxX) (HX) - Hx)
"2y, x|

P(x) ’ dv,, [LT7. (24)

The forms of Eq. (24) in one dimension and two dimensions are
given by Egs. (25) and (26) respectively.

2n "d
P(x) = % /0 /O KX, X)(HX') — H(x))zdrde, (26)
with:
x=(0,0), x' =(r0).

4. Peridynamic hydraulic conductivity

In this section we would like to relate the non-measurable peri-
dynamic hydraulic conductivity to the classic hydraulic conduc-
tivity of the soil. This entails finding an expression for x as a
function of the classic hydraulic conductivity that results in equal
values for variables such as moisture flux or flow power in the peri-
dynamic and classic model.

So far, the only parameter influencing the degree of locality of
the model is ¢, the radius of the horizon. The smaller ¢ is, the more
local the model is, and vice versa. In addition, all the points within
a horizon have an equal influence on its center; the distance to the
center being only an argument of the conductance of a peripipe
and having no influence on the attenuation of the potential felt
at the center. We would like to lift this limitation by introducing
a dependence of the influence of one point on another on the dis-
tance separating them. This adds an extra feature to the descrip-
tion of nonlocality which expands the range of behavior captured
by the model.

4.1. Influence functions

Several influence function types have been used in peridynamic
formulations to describe the dependence of the pairwise interac-
tion on the separation distance. The simplest influence function
is constant, or uniform; it shows no additional dependence on

d &

the separation distance [16,17,26,27]. In evaluating the role the
shape of the influence function plays on the behavior of a
peridynamic model, Seleson and Parks used a family of spherical
influence functions with a softening length of the form
fp(r) = (r+ €)™ [28]. Kilic and Madenci [29] used a normal distri-
bution in their peridynamic thermomechanical model derivation.
In our derivation we used two types of influence functions. The
first is a uniform function; the second is a linear one.

For the case of a uniform influence function (Fig. 3(a)), there is
no dependence of the peridynamic hydraulic conductivity on the
distance between points, and peridynamic conductivity function
is constant:

K(X,X) = K. (27)

For the case of a linear influence function (Fig. 3(b)), the peridynam-
ic hydraulic conductivity function x(x,x’) has a maximum at the
center of the horizon and it decreases linearly as the length of the
peripipe increases. If we set the influence to be zero at the edge
of the horizon and one at the center we get:

(x|

K(X,X') = K(l - T) (28)

4.2. One-dimensional conductivity

In this section, we will derive the peridynamic hydraulic con-
ductivity function for the simple case of isotropic soils. Suppose
we have a saturated one-dimensional infinite homogeneous soil
column. Suppose also that the column is at steady state and under
a linear hydraulic potential field H(x) = ax + c. We would like to
have the moisture flux across a surface perpendicular to the col-
umn at x; given by the classic method to be equal to the same given
by the peridynamic flow model.

According to the classic formulation, the flux at x; is given by
Darcy’s Law:

q(x) = —Ka, (29)

where K is the classic hydraulic conductivity and a is the applied
hydraulic potential gradient. According to the peridynamic formu-
lation, the flux across the surface is given by:

Xs X'+6
qxs) = — / / ar(xx')dx'dx". (30)
Jxs—0 Jxs
In the case of a uniform influence function where x(x,X’) = , solv-
ing the integral in Eq. (30) results in the following:

2
qxs) = — K;a : (31)

Equating Egs. (31) and (29) leads to the following relationship
between the classic hydraulic conductivity and the peridynamic
hydraulic conductivity:

N 2K
K(X7X)=5—2.

(32)

& o

Fig. 3. Uniform and linear influence functions.
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In the case of a linear influence function, we plug Eq. (28) in Eq.
(30), solve the integral and equate the result with Eq. (29) and get:

K(X,X) = % <1 - H&;H) (33)

4.3. Two-dimensional isotropic conductivity

We will now derive the isotropic hydraulic conductivity func-
tion in two dimensions. In this case, for ease of demonstration
we will equate expressions of flow power instead of flux. Consider
a two dimensional saturated soil column at steady state subject to

a linear hydraulic potential H(x) = ax-j +c. In the classical local
continuum framework, the power dissipated by moisture flow
through an infinitesimal element at point x for this case is given by:
1

P(x) = EazK. (34)
The expression for power in the peridynamic framework in two
dimensions is given by Eq. (26). Having a linear hydraulic potential,
we can write the following expression for the potential difference in
polar coordinates:

H(X') — H(x) = arsin(0), (35)
with:
x=(0,0), x =(r,0).

Eq. (26) becomes:
22T nd

P(x) :%/ / K(x,X') a*r’sin(0) drdo. (36)
o Jo

For the case of a uniform influence function, we replace x(x,X’) by k
and we evaluate the integral in Eq. (36) and obtain:

ans’
P(x) = o (37)
Equating Eqs. (37) and (34) and solving for x leads to the following
relationship:

K(X,X) = %K. (38)

For the case of a linear influence function, we replace x(x,x’) by Eq.
(28) in Eq. (36). After evaluating the integral, we equate with Eq.
(34) and solve for x and obtain the following:

x,x) = 22K (1 - M) (39)

7 0

4.4. Two-dimensional anisotropic conductivity

We will now derive the equation for the peridynamic hydraulic
conductivity function for the case of an anisotropic soil, where the
hydraulic conductivity depends on the orientation 0 of the
peripipe.

Let the soil in a vertical column be anisotropic with K, = K and
K, = nK. In the classical framework, the power dissipated at x due
to an applied uniform hydraulic gradient a in the direction of j is
given by:

1

pX) = iazK., (40)

and the power dissipated at x due to an applied uniform hydraulic
gradient a in the direction of i is given by:
1

pX) = ja2nI<. (41)

We need to derive an equation for x(0) that would yield a flow pow-
er equal to the classic formulation for both scenarios. In the classic
framework, the directional hydraulic conductivity, K(6), for an
anisotropic medium is given by:

2 i02 -1
K(0) = (CO;K(O) JrsmK((9)> . (42)

If we use the same form to express x(6) as a function of 0, we get
different results when deriving the relationship between k and
the classic K by applying a uniform hydraulic potential gradient in
the direction of j versus applying the gradient in the direction of i.
However, we will show by verification that the following relation-
ship gives equal results.

(cosz(e) sin2(6)> -
K(0) = + . (43)

n?K K
For the case of a uniform influence function where x(xx') = x(0),

the power dissipated at x due to a uniform hydraulic gradient a

applied in the direction of j and then in the direction of i are given
by Egs. (44) and (45) respectively:

) 2n
P;(x) _1 / / 1(0)a*r?sin(0)* drdo, (44)
2 0 0
1 d 2n
Pi(X) =5 / / K(0)a*r*cos(0)* drdo, (45)
0 0
with:
20) sin’(0))
- (220, 5t0)
Evaluating the integrals in Eqs. (44) and (45) leads to:
nna?s’
n’na*s’
X =30 (47)
Equating Egs. (46) and (40), and solving for x leads to:
=20 Dy 48)
nmo

Equating Egs. (47) and (41), and solving for x leads to the same
result:
3(n+1)

k== 5K (49)

and the equation for the peridynamic hydraulic conductivity for an
anisotropic soil in terms of the classic hydraulic conductivity K and
the anisotropy ratio n using a uniform influence function is given
by:

-1

+ sin2(0)> . (50)

KX, X) =K

3(n+1) (cos?(0)

nmns’ n?
If we use a linear influence function, we multiply the integrand in
Egs. (44) and (45) by the term (1 — ||xx'||/5) and integrate to get
the following:

nna?s’
P = mrn™ 1)
P.(x) _wnety (52)
X =nsn”
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Equating Egs. (51) and (52) with Eqgs. (40) and (41) respectively
leads to the same relationship given by:

e= A U 53)
nmo

and the equation for the peridynamic hydraulic conductivity for a
homogeneous and anisotropic soil in terms of the classic hydraulic
conductivity and the anisotropy ratio n for a linear influence func-
tion is given by:

12(n+1) (1 B ||xx’H> <cosz(¢)

nmo’ o n?

-1

+ sin2(¢)> . (54)

KX, X) =K

4.5. Generalizing to unsaturated, inhomogeneous soils

Egs. (38), (39), (50), and (54) were derived under the assump-
tion that the medium is homogeneous and at saturation, hence
that it has a constant hydraulic conductivity. However, naturally
occurring soils are almost always heterogeneous, and their hydrau-
lic conductivity varies in space. In addition, even soils with fairly
homogeneous parameters will exhibit spacial variability in their
conductivity when in unsaturated regimes due to the dependence
of the conductivity on the moisture content or matric potential.

In order to adapt the derivation to the general case of inhomo-
geneous soils in the unsaturated regime, we will modify the
mechanics of pairwise interactions and make additional assump-
tions. We will first replace each peripipe by two parallel peripipes,
each responsible for half the interaction of the original one, and
each has the peridynamic hydraulic conductivity of one of the
nodes. We will also assume that the relationship between the peri-
dynamic and the classic hydraulic conductivity is independent of
the distribution of the moisture content within the horizon. With
these modifications, the peridynamic hydraulic conductivity densi-
ty is now given by:

K(X) + K(X)
— s
We can prove analytically that with this assumption the peridy-
namic formulation converges to the classic local differential equa-
tion formulation at the limit of vanishing horizon. To do so let us
consider the simple one-dimensional case with a uniform influence
function. The pairwise interaction function of a point x with some
point in its horizon is given by:

K(X,X) = (55)

(K(x +d) + K(x)) (Hx +d) — H(x))
6 |d| '

with d the distance between X and the interacting point. Writing
Eq. (56) as a power series of order six, we get:

2 sien(d 6 o HD (x\K 1 HED (kD
o= () (0 (57557))

Jj=1

J(x) =

(56)

(57)

where the superscript in parenthesis refers to the derivative order
with respect to x. Integrating Eq. (57) over the entire horizon we
get the change in moisture content:
90 (HYK HPK® HPK® HVK®\ ,
a \2a 12 s T2 )°
HOKk HOk® HOK® HOK® HOg@ HOG 4
1080 " 360 ' 144 ' 108 ' 144 ' 360 )°

+HPK+HVKY.

(58)

Taking the limit of Eq. (58) when § goes to zero reduces the peridy-
namic equation to the classic local model:

.90 9*H 0K oH
i 5t =Ko *ox ox (59
Similarly, following the same approach we can prove that the peri-
dynamic moisture flux reduces to the classic Darcy’s equation at the
limit of vanishing horizon. Rewriting the one-dimensional moisture
flux equation (Eq. (20)) as follows:

_ P (K +d) +K(X) (Hx+d) - Hx)
aw=- [ [T a0

Evaluating the first integral after replacing the integrand by its ser-
ies expansion (Eq. (57)), then performing a series expansion around
p and evaluating the second integral leads to the following result:

5. [2KOy+D i KOO
=KH" o == = i .
) *; i+ 1) ;]!(171+1)!(1+2)

=1

(61)

Taking the limit of Eq. (61) when ¢ goes to zero reduces the peridy-
namic equation to the classic Darcy’s equation:

oH

limg(x) = K. (62)

5. Numerical implementation

Numerical implementation of the peridynamic model was
based on a medium discretization into nodes using a regular grid.
Fig. 4 shows a section of a discretized soil column in 1D and 2D
respectively with a grid spacing of Ax and a horizon radius
6 = mAx with, where m is the horizon radius in multiples of grid
lengths. Each node in the grid represents a volume of Ax for the
1D case, or Ax? for the 2D, and has a moisture content 0(x,), an
associated hydraulic potential H(x,) and a hydraulic conductivity
K(xp).

It should be noted that there is no restriction on the type of grid
used when discretizing the domain. The decision to use a regular
grid was taken due to its simplicity and because only regular
shapes will be modeled for this research. In fact, irregular grids
are just as adequate, if not more helpful, when modeling complex
geometries [30].
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Fig. 4. 1D and 2D discrete representation of a peridynamic medium. Red point is
the center of the horizon. Points in green and cyan are respectively fully and
partially included in the horizon. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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After setting the initial and boundary conditions, the discrete
forms of the peridynamic equations of change in moisture content
were explicitly integrated in time using the simple Euler method
with a small time step. At the end of each time step, the hydraulic
conductivity and the matric potential at every point in the domain
are updated using the new moisture content values and the Van
Genuchten hydraulic conductivity and water retention curves. Tak-
ing advantage of modern multi-core processors, the model code
was written in C++ to run in parallel on shared memory machines
using the OpenMP library.

Replacing x in Eq. (12) by its expression for the one-dimension-
al case, Eq. (32) for a uniform influence function, and Eq. (32) for a
linear influence function, and writing it in discrete form leads to
the following discrete peridynamic equations for the evolution of
moisture content for the cases of uniform and linear influence
functions respectively:

90(Xn) TR (K(Xa) + K(Xp))

ot N P%n (;ZHXnXPH (H(XP) - H(xn))AX7 (63)
00(Xn) (L XaXpl\ 3(K(Xa) + K(Xp)) B
ot p;,(l 0 ) 52HXnXp|| (H(Xp) — H(Xn))Ax,

p#n

(64)

where the summation index p spans all the points belonging to the
horizon of point xy.

As for the two-dimensional case, due to its increased computa-
tional cost a more efficient numerical scheme involving 2D convo-
lutions was used to speed up the simulation. We will start by
rewriting the 2D flow equation in a more concise manner:

0y

- / (Ky + Ky )(Hy — Hy) Ay VX, (65)
Ot Hyx

where A,y is obtained from Eqs. (50) and (54) describing the rela-
tionship between x and K for the two-dimensional general
anisotropic case using a uniform and linear influence functions
respectively. A,y is given by:

3(n+1) <cosz(9) P >*1
+ sin” (0
2nmd?|xx|| \  n? ©)
1, Uniform influence function
x 4(1 - ”%”) Linear influence function

(66)

Expanding the integrand in Eq. (65), we get:

Ky HyAxw dVX

Hx

:/ Ky HyAy dVX' —
Hy

KX/HXIAXX/ dvx' —

JHy Hx

KX/HXAxxr dvx'. (67)

Which is the following sum of two-dimensional convolutions with a
circular kernel A with radius 6:

20y
ot
Because we are using a regular grid, and noting that A, depends only

on |xx'|| and 6 and, therefore, could be represented by a matrix
A2m+1,2m + 1), Eq. (68) is written in the following discrete form:

% =K; Z Z HapAipAX* — KiiHji Z ZAkpr

= Ky(H % A) — KyHy(1 % A) + (KH) % A — Hy(K + A). (68)

—mp=-m —mp=-m
+ Z ZK,,,,H pAip AX? —H,,Z ZK pAp AR, (69)
k=—mp=—m k=—mp=—m

witha=i+kand b=j+p.

At every time step of the simulation, each convolution in Eq.
(69) is submitted and evaluated on one processor core. In addition,
following the evaluation of the convolutions, the domain is split
between all available cores where moisture content, matric poten-
tial, and hydraulic conductivity at each point are updated before
the next time step.

Several functions exist for modeling the relationship between
the soil moisture content and matric potential and for calculating
the unsaturated hydraulic conductivity as a function of the mois-
ture content and the saturated hydraulic conductivity. For the cur-
rent implementation we opted for the Van Genuchten model [31]
for matric potential and hydraulic conductivity given by the fol-
lowing equations:

0s — 0
OH) =0+ ————— 70
( ) +[1+(a|H|)n}l—l/nr ( )
1 n ol 2
0—0,\} 0—0,\"1] "
1<(6):1<s<95_9r> “{“(93—0,) } , (71)

where 0, and 0, are the saturation and residual volumetric water
content respectively. Also, K is the soil hydraulic conductivity at
saturation, o is related to the inverse of the air entry pressure,
and n is a parameter related to the soil pore size distribution. Rear-
ranging Eq. (70) we get the matric potential as a function of the
moisture content:

H(0) = 7% {(%gﬁ_‘l}l (72)

6. Model validation

In order to validate the proposed model, and analyze the effects
that the horizon radius (4), the density of points per horizon radius
(m), and the type of influence function (uniform or linear) have on
the performance of the model, several 1D and 2D scenarios are
simulated. Due to the lack of an analytical solution of the flow
problem, the same scenarios are also simulated using the finite ele-
ment models HYDRUS-1D and HYDRUS 2D/3D [32,33] that solve
the classic Richard’s equation in one dimension and two dimen-
sions respectively, and their results are used as a benchmark for
evaluating the accuracy of the peridynamic flow model.

The simulations are divided into three groups. The first group
includes 1D scenarios that simulate drainage from a saturated soil
column for various horizon radius values, and various point density
values for each radius. The simulations were performed using a
uniform influence function, and repeated using a linear influence
function. Groups two and three are 2D scenarios. Group 2 simu-
lates moisture redistribution within a horizontal soil layer having
an area with a higher moisture content than the rest of the layer.
The third group is scenarios of drainage from a vertical soil column
with a moisture content initially at saturation. The soil in the first
group has homogeneous properties, whereas the soil in the second
group is composed of two soil types. 2D simulations were per-
formed assuming isotropy, and then repeated assuming anisotropy
of the hydraulic conductivity; they were also performed twice,
using a uniform influence function in one, and a linear influence
function in the other.

6.1. One-dimensional scenarios
In these scenarios we simulate drainage of a vertical soil column

from saturation. The vertical soil column is 300 cm long. Initially
the entire soil column is at saturation. The top boundary at



R. Jabakhanji, R.H Mohtar / Advances in Water Resources 78 (2015) 22-35 29

X =300 cm is a no flow boundary condition. The bottom boundary
is maintained at saturation, simulating the level of the water table
at x = 0cm.

Table 1 lists the different horizon radii and m values used, along
with the corresponding grid spacing. Table 2 lists the soil para-
meters for the Van Genuchten model for matric potential and
hydraulic conductivity for the soil used.

In HYDRUS-1D the column is simulated using the Van Genucht-
en soil model, and a top boundary condition of zero flux. The bot-
tom boundary is maintained at saturation and, initially, all the soil
profile is set to saturation moisture content. Grid length is set to
0.5 cm in order to remain within the maximum number of nodes
of the program. Conversion criteria were set to 1E-5 for absolute
change in moisture content and to 0.01 cm for absolute change
in matric potential.

For the peridynamic model, the soil is initially set at saturation
moisture content. Because of the nonlocal nature of the formula-
tion, the bottom boundary condition is simulated by adding an
additional number of nodes from x = 0cm to x = —§. The lower
boundary nodes are maintained at saturation moisture content
for the duration of the simulation. The time step used for the drai-
nage scenarios is 1E-6 days.

Fig. 5 is a plot of the moisture profile of the drainage scenario
recorded time at 1 day, 3 day and 10 days. The solid lines are the
results using the classic formulation modeled using HYDRUS-1D.
Overlaid in squares and triangles are the plots using the peridy-
namic formulation for the uniform and linear influence functions
respectively for a horizon radius § = 1 cm and a point density value
m = 4. Following a visual inspection of the plots we observe a very
good agreement between the results of the peridynamic model and
the classic model.

In order to obtain a more quantitative evaluation of the level of
agreement between both methods, we will analyze more closely
the results at 1 day. Specifically, we will examine the effects the
values of the horizon radius (), the point density (m) and the
shape of the influence function (uniform or linear) have on the rela-
tive difference between the results of the peridynamic model and
HYDRUS-1D for two variables: the value of the surface moisture
content and the total amount of moisture that exited the profile.
The relative difference is calculated as follows:

0 (X) -0 lassic (X)
rd(x) = 1002027 “HESCS)
( ) gclassic (X)

Figs. 6 and 7 are plots of the relative difference of the surface
moisture content versus the point density value (m) for various
horizon radii (6 = 1,3,4,5 cm) using a uniform influence function
and a linear influence function respectively. We observe that with
increasing values of m, the relative difference curve for each

(73)

Table 1
Grid size for the various horizon radii (5) and point densities (m) used in the one-
dimensional scenarios.

s\m 1 3 4 5
2 0.500 1.500 2.0 2.50
4 0.250 0.750 1.0 1.25
5 0.200 0.600 0.8 1.00
8 0.125 0.375 0.5 0.625
Table 2
Van Genuchten soil parameters for the one-dimensional scenarios.
05 (-) or (-) K; (cm/day) o (cm™1) n(-)
0.430 0.078 24.96 0.036 1.56
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Fig. 5. Drainage scenario: Moisture profile at 1, 3, and 10 days. HYDRUS-1D
simulation results plotted as solid lines. Peridynamic simulation results for
§ =1 cm,m = 4. Uniform influence function results plotted as squares, linear as
triangles; only every 50 points are plotted for visibility.
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Fig. 6. Drainage scenario: effect of m on the relative difference (%) for soil surface
moisture content at 1 day between HYDRUS-1D and the peridynamic simulation
using a uniform influence function. For each horizon radius the relative difference
decreases with increasing point density. Also, relative difference curves of smaller
horizon radii are closer to 0%.

horizon radius (J) converges to a limit value with smaller relative
difference. This behavior is expected; as the number of points
within a horizon increases, the distribution of moisture content
is sampled more accurately and its influence on the change of
moisture content at the center of the horizon is better represented.
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Fig. 7. Drainage scenario: effect of m on the relative difference (%) for soil surface
moisture content at 1 day between HYDRUS-1D and the peridynamic simulation
using a linear influence function. For each horizon radius the relative difference
decreases with increasing point density. Also, relative difference curves of smaller
horizon radii are closer to 0%.

The same trend is observed in Figs. 8 and 9, where the relative dif-
ference of the total moisture that drained out of the profile is plot-
ted against m for the same horizon radii, using uniform and linear
influence functions respectively.

The results also indicate that as the horizon radius (J) decreases
the performance of the model increases. Larger horizon radii ()
lead to an overestimation of the surface moisture content, and an
underestimation of the total amount of drained moisture. With
decreasing horizon radii, the relative difference moves towards a
smaller value. This is evident in Figs. 6-9 where the curves of
smaller horizons fall closer to the zero relative difference line.
We attribute this to the fact that as the horizon radius decreases,
the influence of points closer to the center of the horizon increases
and the model becomes more localized and closer to the classic
local formulation.

6.2. Two-dimensional scenarios

These scenarios are divided into two groups. The first group is
scenarios of moisture redistribution within a horizontal soil layer
having an area with a higher moisture content than the rest of
the layer. The second group is scenarios of drainage from a vertical
soil column with a moisture content initially at saturation. The soil
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Fig. 8. Drainage scenario: effect of m on the relative difference (%) for total amount
of drained moisture at 1 day between HYDRUS-1D and the peridynamic simulation
using a uniform influence function. For each horizon radius the relative difference
decreases with increasing point density. Also, relative difference curves of smaller
horizon radii are closer to 0%.
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Fig. 9. Drainage scenario: effect of m on the relative difference (%) for total amount
of drained moisture at 1 day between HYDRUS-1D and the peridynamic simulation
using a linear influence function. For each horizon radius the relative difference
decreases with increasing point density. Also, relative difference curves of smaller
horizon radii are closer to 0%.

in the first group has homogeneous properties, whereas the soil in
the second group is composed of two soil types.

In each group, the simulations were performed assuming
isotropy, and then repeated assuming anisotropy of the hydraulic
conductivity. In addition, every simulation was performed twice,
using a uniform influence function in one, and a linear influence
function in the other. All the peridynamic simulations were per-
formed using a horizon radius 6 = 1 cm and a point density value
m = 4 yielding a grid size Ax = 0.25 cm. The choice 6 and m was
made by taking into consideration the results of the convergence
analysis performed in developing the peridynamic flow model in
one dimension, and the computational resources required for run-
ning the simulations.

The properties of the various soils used in the simulations such
as residual moisture content, moisture content at saturation, and
the saturated hydraulic conductivities, along with the Van
Genuchten model parameters for these soils, are listed in Table 3.

6.2.1. Moisture redistribution scenarios

These examples simulate the redistribution of moisture within
a two-dimensional horizontal layer of soil. The soil layer is
100 cm long by 100 cm wide. The soil layer is divided into two
zones. Zone One is a 30 cm long by 30 cm wide in the middle of
the soil layer with the lower left corner located at coordinates
(35,35) and the upper right corner located at coordinates
(65,65). Zone Two is the soil layer excluding Zone One. Soil prop-
erties in both zones are identical. Initially, the soil in Zone One is at
saturation moisture content 0.43%, and the soil in Zone Two is at
0.25%. The boundary conditions at the edges of the soil layer are
no flow boundary conditions. We simulated two variants of this
example. In the first variant, we used soil S1 that has an isotropic
hydraulic conductivity; in the second, we used soil S2 that has
an anisotropic hydraulic conductivity, with the major conductivity
directions parallel to the model axis.

Table 3

Van Genuchten soil parameters for two-dimensional scenarios.
SoillD 05 (=) 0r(-) Ksy(cm/day) Ks, (cm/day) o« (cm~') n(-)
S1 0430 0.078 1248 12.48 0.036 1.56
S2 0.430 0.078 24.96 12.48 0.036 1.56
S3 0.430 0.078 24.96 24.96 0.036 1.56
S4 0430 0.078 1248 6.24 0.036 1.56
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In HYDRUS 2D/3D, the layer is simulated using the Van
Genuchten soil model, with all boundary conditions set to zero
flux. Initially, nodes in Zone One are set to saturation moisture con-
tent, and all the other nodes are set to a moisture content of 0.25%.
Grid length is set to 0.5 cm in order to remain within the maximum
number of nodes of the program. Conversion criteria were set to
1E-5 for absolute change in moisture content and to 0.01 cm for
absolute change in matric potential.

For the peridynamic model, zero flux boundary conditions were
simulated by using periodic boundary conditions. Because of the
symmetry of the problem, periodic and no flow boundary condi-
tions are equivalent. The moisture content for soil volumes in Zone
One were initially set to saturation moisture content, and the
remaining were set to a moisture content of 0.25%. The time step
used for these scenarios is 1E-5 h.

Isotropic conductivity. Fig. 10 is an image of the moisture content
distribution of the isotropic redistribution scenario at 2 h simulat-
ed using HYDRUS 2D/3D. It is clear from Figs. 11 and 12 that for
both influence function types, the relative difference between the
peridynamic and classic models is very small, and varies between
around —0.1%, up to about 0.4% for the uniform influence function,
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Fig. 10. Redistribution scenario, isotropic soil: hydrus simulation results for
moisture content at 2 h.
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Fig. 11. Redistribution scenario, isotropic soil: relative difference (in %) of moisture
content between the peridynamic model results and the classic model HYDRUS at
2 h. Uniform influence function, § = 1 cm, and a point density value m = 4.
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Fig. 12. Redistribution scenario, isotropic soil: relative difference (in %) of moisture
content between the peridynamic model results and the classic model HYDRUS at
2 h. Linear influence function, 6 = 1 cm, and a point density value m = 4.

and up to 0.3% for the linear influence function. We notice that at
the center of Zone One, the peridynamic model slightly underesti-
mates the moisture content. As we move away from the center, the
relative difference changes very slowly until we get closer to the
edges of Zone One, where it increases sharply and becomes posi-
tive, then sharply decreases back to a small negative value before
it tapers off at zero.

The fact that these sharp changes in relative difference happen
over a small distance makes them less problematic and reduces
their bearing on the performance of the model. Nevertheless, they
are better understood when we notice that they coincide at the
front separating the saturated soil from the soil at a lower moisture
content. In this region, the moisture gradient is very large, and
even small variations in its location and shape from one model
to another may lead to large variations in moisture content at
points within the front.

These variations between the classic and the peridynamic mod-
els can be attributed to the nature of these models, specifically the
local versus non-local aspects of the formulations. To illustrate, let
us go through the process of moisture redistribution scenario. At
the beginning of the simulation, the soil has a sharp drop in mois-
ture at the interface between Zone One and Zone Two. As time goes
by, moisture flows from Zones One into Zone Two, which leads to
an increase of the moisture content in Zone Two and a decrease in
Zone One near the interface. Consequently, the interface zone
widens and the moisture gradient becomes smaller. In the classic
local formulation, this exchange happens over an infinitesimal dis-
tance; whereas, in the nonlocal peridynamic framework, moisture
exchange happens over the entire radius of the horizon. This
means that moisture is exchanged from one side of the front to
the other, between points located further away from the front. This
leads to more moisture moving from one side of the interface to
the other side, which explains the observed relative differences.

Although this behavior is observed in both peridynamic simula-
tions, some differences exist between the results obtained using a
uniform influence function and those obtained using a linear influ-
ence function. The simulation using the uniform type underesti-
mated the moisture content inside Zone One, and overestimated
it near the front in Zone Two when compared to the results from
the linear influence function.

These differences between the uniform and linear influence
functions are attributed to the shape of the function. Despite the
fact that we used the same horizon radius in both simulations,
the uniform influence function treats all the points within a
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horizon equally, whereas a linear influence function favors more
points that are near the center at the expense of points further
away. This preference for points closer to the center makes the
behavior of a peridynamic model with a linear influence function
less nonlocal and closer to the classic local model.

Anisotropic conductivity. Fig. 13 is an image of the moisture con-
tent distribution of the anisotropic redistribution scenario at 2 h
simulated using HYDRUS 2D/3D. From Figs. 14 and 15 we notice
that the values of the relative difference are acceptable and range
between —0.2% and 0.7%. Similarly to the results from the simula-
tions of isotropic soils, we notice that at the center of Zone One, the
model slightly underestimates the moisture content. As we move
away from the center, the relative error changes very slowly until
we get closer to the edges of Zone One, where the relative differ-
ence increases sharply before it reverses in direction and tapers
off at zero.

However, when compared to the simulations of the isotropic
soil, these results exhibit some very clear differences in the relative
difference. The first is the difference in magnitude of the
relative difference between the major flow axes, where it is higher
in the direction of faster flow. The second is that the results of
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Fig. 13. Redistribution scenario, anisotropic soil: hydrus simulation results for
moisture content at 2 h.
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Fig. 14. Redistribution scenario, anisotropic soil: relative difference (in %) of
moisture content between the peridynamic model results and the classic model
HYDRUS at 2 h. Uniform influence function, § = 1 cm, and a point density value
m=4.
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Fig. 15. Redistribution scenario, anisotropic soil: relative difference (in %) of
moisture content between the peridynamic model results and the classic model
HYDRUS at 2 h. Linear influence function, § = 1 cm, and a point density value m = 4.

the simulation using a linear influence function show even higher
relative difference along this direction, and a reduction in the
relative difference in the direction of slower flow, compared to
the results using the uniform influence function.

We attribute the model’s deviation in behavior from the
isotropic soil simulations to a combination of factors. The first fac-
tor is related to the Euler scheme we used to integrate the simula-
tion forward in time. This naive numerical method requires a very
small time step to give accurate results, which we used. However,
no matter how small the error is, it remains proportional to the
hydraulic conductivity, and it effectively translates into a propor-
tional increase in the conductivity.

The second factor in the model’s deviation is related to the
medium’s anisotropy. As a result of this anisotropy, the error in
the direction of the fast flow will be larger than the error in the
direction of the slow flow. This asymmetry in the error leads to
an effective increase in the conductivity that is also asymmetric
and highest along the fast flow direction. Consequently, more
moisture flows from Zone One towards the left and right fronts,
leaving the center with a lower than expected moisture content,
which in turn slows the flow in the other direction and prevents
higher relative differences at the top and bottom front.

This behavior is even more pronounced when we use a linear
influence function, which is peculiar since the more local behavior
of the linear influence function suggests that the results should be
closer to the classic model. However, Fig. 15 shows a stronger
asymmetry, with a higher increase in relative difference at the left
and right fronts, and a higher decrease in relative difference at the
top and bottom fronts. One potential explanation is that because of
the more local behavior and the fact that a linear function favors
more points closer to the center, the linear influence function bet-
ter captures the effects of the numerical errors, whereas the uni-
form influence function smears this effect over the entire horizon
by acting as a low pass filter.

6.2.2. Drainage scenarios — heterogeneous soil

The following examples simulate the drainage of moisture from
a two-dimensional vertical layer of soil. The soil layer is 100 cm
long by 100 cm wide, and is divided into three vertical zones. Zone
Two is 100 cm long by 30 cm wide in the middle of the soil layer
with the lower left corner located at coordinates (35,0) and the
upper right corner located at coordinates (65, 100). Zone One and
Zone Three are respectively at the left and right of Zone Two. Zone
One and Zone Three have identical soils, whereas the soil in Zone
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Two has a faster hydraulic conductivity. Initially, the soil is at
saturation moisture content (0.43%). The left, right, and top
boundary conditions are no flow boundary conditions, and the bot-
tom boundary is maintained at saturation. We simulated two vari-
ants of this example. In the first variant, we used soil S1, in Zone
One and Zone Three, and soil S3 in Zone Two, all of which have
an isotropic hydraulic conductivity. In the second variant we
replaced soils S1 and S3 by soils S4 and S2 respectively. These soils
have an anisotropic hydraulic conductivity, with the major conduc-
tivity directions parallel to the model axis.

In HYDRUS 2D/3D, the layer is simulated using the Van
Genuchten soil model. The left, right, and top boundary conditions
are set to zero flux, while the bottom boundary is maintained at
saturation. Soil elements were assigned their respective type
depending on their location. At time zero all nodes were set to
saturation moisture content. Grid length is 0.5cm in order to
remain within the maximum number of nodes of the program.
Convergence criteria were set to 1E-5 for absolute change in mois-
ture content and to 0.01 cm for absolute change in matric
potential.

For the peridynamic model, zero flux boundary conditions were
assigned to the top, left and right boundaries. Because of the non-
local nature of the formulation, the bottom boundary condition
was simulated by adding an additional number of nodes from
x=0cm to x = —4. The lower boundary nodes were maintained
at saturation moisture content for the duration of the simulation.
Moisture content was set initially to saturation everywhere, and
the soil volumes were assigned their respective soil types. The time
step used for these scenarios was 1E-6 days.

Isotropic conductivity. Fig. 16 is an image of the moisture content
distribution of the isotropic drainage scenario at 0.2 days simulat-
ed using HYDRUS 2D/3D. As in our previous analysis, we will look
at the relative difference of the moisture content between the
results of the peridynamic model and the classic model to evaluate
the level of agreement between both models and investigate the
impact of the type of the influence function on the performance
of the model. Figs. 17 and 18 are the images of the relative differ-
ence at 0.2 days for the uniform and linear influence functions
respectively.

We note from these results that for both influence function
types, the relative difference between the peridynamic and the
classic models is small, and does not exceed —0.275%, with the
results of the simulation using a linear influence function yielding
smaller areas with large relative differences.
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Fig. 16. Drainage scenario, isotropic soil: hydrus simulation results for moisture
content at 0.2 days.
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Fig. 17. Drainage scenario, isotropic soil: relative difference (in %) of moisture
content between the peridynamic model results and the classic model HYDRUS at
0.2 days. Uniform influence function, 6 = 1 cm, and a point density value m = 4.
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Fig. 18. Drainage scenario, isotropic soil: relative difference (in %) of moisture
content between the peridynamic model results and the classic model HYDRUS at
0.2 days. Linear influence function, 6 = 1 cm, and a point density value m = 4.

We also note an interesting feature near the top boundary
where the relative difference decreases. This feature is attributed
to a reduced conductivity compared to the rest of the domain
which produces a lower moisture flow out of the soil near the
boundary and leads to the high relative differences observed just
below the boundary. This reduced conductivity is the result of
the assumptions made when deriving the relationship between
the peridynamic and the classic conductivity - specifically, the
assumption that a point interacts with a full horizon, which is
not the case for points located less than a horizon radius away from
the boundary.

Anisotropic conductivity Fig. 19 is an image of the moisture con-
tent distribution of the anisotropic drainage scenario at 0.2 days
simulated using HYDRUS 2D/3D. We note from the results in
Figs. 20 and 21 that for both influence function types, the relative
difference between the peridynamic and the classic models is
small, and does not exceed —0.2% for the uniform influence func-
tion, and —0.16% for the linear influence function.

The same feature that is observed near the top boundary in the
isotropic case is also present, but it is more stretched in the direc-
tion of the higher conductivity. We attribute this to the higher
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Fig. 19. Drainage scenario, anisotropic soil: hydrus simulation results for moisture
content at 0.2 days.
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Fig. 20. Drainage scenario, anisotropic soil: relative difference (in %) of moisture
content between the peridynamic model results and the classic model HYDRUS at
0.2 days. Uniform influence function, § = 1 cm, and a point density value m = 4.
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Fig. 21. Drainage scenario, anisotropic soil: relative difference (in %) of moisture
content between the peridynamic model results and the classic model HYDRUS at
0.2 days. Linear influence function, § = 1 cm, and a point density value m = 4.

conductivity of the soil in Zone Two that is draining faster and pull-
ing more water in from Zone One and Zone Three, which also have
a higher conductivity in the horizontal direction that leads to the
mobilization of an additional horizontal flow at that depth which
extends the region of lower moisture content laterally.

7. Conclusion

In this paper we derived a nonlocal derivative free alternative of
the Richards equation. We replaced the deferential flow equation
by an integral functional, where the absence of spacial derivative
allows for the simulation of domains with internal evolving singu-
larities such as desiccation cracks, a feature of soils with a high
shrink/swell potential. Expressions relating the peridynamic
hydraulic conductivity to the measurable classic hydraulic conduc-
tivity were derived for problems in one- and two-dimensions
including heterogeneous and anisotropic soils.

Using the derived model, we simulated scenarios of drainage
and moisture redistributions in one- and two-dimensions. We
repeated the same simulation using the classic local formulation
using HYDRUS, a finite element model that solves the classic
Richards equation [32,33]. The results of both formulations were
compared and show a good level of agreement. It is important to
mention that the simulated validation scenarios did not include
soil domains undergoing cracking. Validation of the model for
the case of cracking soils is the subject of current research and will
be presented in a subsequent paper.
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